Features

Store Health

Store Health monitors your store's operational metrics and detects anomalies in orders, fulfillment, refunds, and revenue. Get alerted when something's off before it becomes a bigger problem.

Store Health

Store Health monitors your store's operational metrics and detects anomalies in orders, fulfillment, refunds, and revenue. Get alerted when something's off before it becomes a bigger problem.


Overview

Store operations have natural patterns. When those patterns break, it often indicates a problem. Store Health provides:

  • Daily KPI Tracking: Orders, fulfillment rate, refund rate, revenue
  • Baseline Comparison: Smart thresholds based on your store's patterns
  • Anomaly Detection: Automatic alerts when metrics deviate significantly
  • Correlation Analysis: Link anomalies to potential causes
  • Historical Trends: Understand patterns over time

Getting Started

Baseline Period

Store Health requires 7 days of data to establish baselines:

┌─────────────────────────────────────────────────────────────────┐
│  BASELINE SETUP                                                 │
│                                                                 │
│  Day 4 of 7                                                     │
│  [████████████░░░░░░░░░░░░] 57%                                 │
│                                                                 │
│  We're collecting data to understand your store's normal        │
│  patterns. Anomaly detection will activate in 3 days.           │
│                                                                 │
│  Data collected so far:                                         │
│  ├─ Orders: 342                                                 │
│  ├─ Average daily orders: 85                                    │
│  ├─ Average fulfillment rate: 94%                              │
│  └─ Average refund rate: 2.1%                                   │
│                                                                 │
│  You can still view metrics, but alerts won't fire yet.        │
└─────────────────────────────────────────────────────────────────┘

After Baseline

Once established, PeerScripts actively monitors for anomalies:

┌─────────────────────────────────────────────────────────────────┐
│  STORE HEALTH                                     [Sync Now]    │
│                                                                 │
│  ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐          │
│  │  Orders  │ │Fulfillment│ │  Refund  │ │ Revenue  │          │
│  │   142    │ │   94.2%   │ │   2.1%   │ │ $24,580  │          │
│  │  ↑ 12%   │ │  ↓ 2.3%  │ │  normal  │ │  ↑ 15%   │          │
│  └──────────┘ └──────────┘ └──────────┘ └──────────┘          │
│                                                                 │
│  Status: HEALTHY                                                │
│  All metrics within normal ranges                               │
│                                                                 │
│  Recent Attention Items: 0                                      │
└─────────────────────────────────────────────────────────────────┘

Key Metrics

Orders

Total orders placed in the selected period.

Indicator Meaning
↑ Green Increase from baseline (usually good)
↓ Red Decrease from baseline (investigate)
Normal Within expected range

Anomaly Triggers:

  • 50% increase (could indicate viral traffic or fraud)

  • 30% decrease (could indicate site issues)

Fulfillment Rate

Percentage of orders fulfilled within expected timeframe.

Rate Status Action
95-100% Excellent Maintain
85-94% Good Monitor
70-84% Warning Investigate
< 70% Critical Act immediately

Anomaly Triggers:

  • Drop > 10% from baseline
  • Sustained below 85%

Refund Rate

Percentage of orders that resulted in refunds.

Rate Status Possible Causes
0-2% Normal -
2-5% Elevated Product issues, shipping damage
5-10% High Quality problems, description mismatch
> 10% Critical Systemic issues

Anomaly Triggers:

  • 2x baseline rate

  • Spike in short period

Revenue

Total revenue in the period (excluding refunds).

Indicator Meaning
↑ Green Revenue increase
↓ Red Revenue decrease
AOV Change Average order value shifted

Attention Items

What Are Attention Items?

Attention items are anomalies that require your review:

┌─────────────────────────────────────────────────────────────────┐
│  ATTENTION ITEMS                                                │
│                                                                 │
│  ⚠ HIGH PRIORITY                                               │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │  Fulfillment Rate Drop                                   │   │
│  │  Current: 78%  •  Baseline: 94%  •  Change: -16%        │   │
│  │  Detected: 2 hours ago                                   │   │
│  │  [View Details]  [Acknowledge]                           │   │
│  └─────────────────────────────────────────────────────────┘   │
│                                                                 │
│  ⓘ MEDIUM PRIORITY                                             │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │  Order Volume Spike                                      │   │
│  │  Current: 245  •  Baseline: 142  •  Change: +72%        │   │
│  │  Detected: 6 hours ago                                   │   │
│  │  [View Details]  [Acknowledge]                           │   │
│  └─────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘

Attention Item Types

Type Severity Description
Fulfillment Drop High Fulfillment rate below threshold
Fulfillment Delay High Fulfillment taking longer than usual
Refund Spike High Unusual increase in refunds
Cancellation Spike High Unusual increase in cancellations
Order Volume Anomaly Medium Orders significantly above/below baseline
Revenue Anomaly Medium Revenue significantly different from expected
Inventory Stockout Medium Top sellers out of stock

Viewing an Attention Item

┌─────────────────────────────────────────────────────────────────┐
│  ATTENTION ITEM: Fulfillment Rate Drop                          │
│                                                                 │
│  Severity: HIGH           Status: Active                        │
│  Detected: Jan 15, 2025 at 2:30 PM                             │
│                                                                 │
│  ─────────────────────────────────────────────────────────────  │
│                                                                 │
│  SUMMARY                                                        │
│  Fulfillment rate dropped significantly from baseline.          │
│                                                                 │
│  METRICS                                                        │
│  ├─ Current Rate: 78%                                          │
│  ├─ Baseline Rate: 94%                                         │
│  ├─ Change: -16 percentage points                              │
│  └─ Duration: 8 hours                                           │
│                                                                 │
│  AI ANALYSIS                                                    │
│  Based on available data, this drop appears correlated with    │
│  increased order volume (+72%). The fulfillment team may be    │
│  overwhelmed. Additionally, 15 orders are pending for items    │
│  that went out of stock this morning.                          │
│                                                                 │
│  POTENTIAL CORRELATIONS                                         │
│  ├─ Theme change detected 10 hours ago                         │
│  ├─ Order volume spike started 8 hours ago                     │
│  └─ 3 products went out of stock                               │
│                                                                 │
│  [Create Ticket]  [Acknowledge]  [Dismiss]                     │
└─────────────────────────────────────────────────────────────────┘

AI Analysis

Automatic Analysis

PeerScripts AI analyzes each attention item to provide:

  • Root cause suggestions based on data patterns
  • Correlation identification with recent changes
  • Recommended actions to resolve the issue
  • Historical context from similar past events

Requesting Analysis

For any attention item:

  1. Click View Details
  2. Click Analyze (if not already analyzed)
  3. Wait for AI to process
  4. Review findings and recommendations

Correlation Detection

What Gets Correlated?

PeerScripts automatically checks for relationships between anomalies and:

Data Source Examples
Theme Changes File edits, theme swaps
Product Changes Price updates, inventory changes
App Activity New installs, app updates
Marketing Events Email campaigns, ad launches
External Events Holidays, known site changes

Viewing Correlations

┌─────────────────────────────────────────────────────────────────┐
│  CORRELATIONS                                                   │
│                                                                 │
│  Timeline (Last 24 Hours)                                       │
│                                                                 │
│  10:00 ─── Theme file edited: header.liquid                    │
│            Changed: Removed promotional banner                  │
│                                                                 │
│  11:30 ─── Order volume started increasing                     │
│            Rate: +15% per hour                                  │
│                                                                 │
│  14:00 ─── Product SKU-123 went out of stock                   │
│            Last units sold, no replenishment pending           │
│                                                                 │
│  14:30 ─── ⚠ ALERT: Fulfillment rate drop detected            │
│            Dropped from 94% to 78%                              │
│                                                                 │
│  Likely Cause: Combination of high volume and stockout         │
│  preventing order completion.                                   │
└─────────────────────────────────────────────────────────────────┘

Historical Metrics

Viewing Trends

Access historical data:

  1. Click History in Store Health
  2. Select date range
  3. Choose metrics to display
  4. View trend charts
Fulfillment Rate Trend (30 Days)
100%┤
 95%┤────────────────╮   ╭────
 90%┤                ╰───╯
 85%┤
 80%┤                    ↓ Current
    └─────────────────────────
      Week 1  Week 2  Week 3  Week 4

Comparing Periods

Compare current period to:

  • Previous week
  • Previous month
  • Same period last year
  • Custom period

Health Baselines

How Baselines Work

Baselines are calculated from your store's historical patterns:

  1. Rolling Average: Last 7-14 days of data
  2. Day-of-Week Adjustment: Account for weekly patterns
  3. Seasonality: Consider known seasonal trends
  4. Outlier Exclusion: Ignore anomalous past data

Baseline Settings

Configure baseline behavior:

Setting Description Default
Rolling Window Days used for baseline 14
Sensitivity How much deviation triggers alert Medium
Excluded Dates Dates to ignore in baseline None

Manual Sync

When to Sync Manually

  • After making significant changes
  • To see latest data immediately
  • If automatic sync seems delayed

How to Sync

  1. Click Sync Now in Store Health
  2. Wait for sync to complete (usually < 1 minute)
  3. Review updated metrics

Best Practices

Daily Monitoring

  1. Check dashboard each morning
  2. Review any new attention items
  3. Acknowledge or act on items
  4. Monitor metrics throughout the day

Responding to Anomalies

  1. Don't panic - Review the data first
  2. Check correlations - What changed recently?
  3. Use AI analysis - Get intelligent suggestions
  4. Create tickets - Track your investigation
  5. Take action - Resolve the root cause
  6. Acknowledge - Mark as handled

Maintaining Healthy Baselines

  1. Keep regular operations - Consistency improves detection
  2. Mark special events - Exclude sales events from baseline
  3. Review periodically - Ensure baselines reflect reality

Troubleshooting

No Alerts Firing

  • Check if baseline period is complete (7 days)
  • Verify sensitivity settings aren't too low
  • Ensure data is syncing properly

Too Many Alerts

  • Increase sensitivity threshold
  • Exclude known special events
  • Adjust baseline window

Incorrect Metrics

  • Verify Shopify data accuracy
  • Check for delayed sync
  • Review date range selected

Related Features